I want to calculate exciton binding energy of monolayer black phosphorus. I have calculated band gap with gw method and plot band structure with no problem (the Eg is about 2eV with gw). Then I add BSE to get binding energy, but when I plot absorption spectrum with data in o-BSE.eps_q1_diago_bse file, the location of first peak is far away from Eg. Here is my bse input:
Code: Select all
#
# ooooo oooo .. ooo ooo ooooooooo. .oooo.
# `88. .8" .88. `88. .88 `88" `Y8b dP" `Yb
# `88. .8" .8"88. 888b d"88 88 888 88 88
# `88.8" .8" `88. 8 Y88. .P 88 88oooo888" 88 88
# `88" .88ooo888. 8 `888" 88 88 `88b 88 88
# 88 .8" `88. 8 Y 88 88 .88P `8b d8"
# o88o88o 888o8 88 o88bood8P" `Ybod8P"
#
#
# GPL Version 4.1.2 Revision 120
# MPI+OpenMP Build
# http://www.yambo-code.org
#
rim_cut # [R RIM CUT] Coulomb potential
optics # [R OPT] Optics
ppa # [R Xp] Plasmon Pole Approximation
bss # [R BSS] Bethe Salpeter Equation solver
bse # [R BSE] Bethe Salpeter Equation.
bsk # [R BSK] Bethe Salpeter Equation kernel
em1d # [R Xd] Dynamical Inverse Dielectric Matrix
StdoHash= 40 # [IO] Live-timing Hashes
Nelectro= 20.000000 # Electrons number
ElecTemp= 0.000000 eV # Electronic Temperature
BoseTemp= 0.000000 eV # Bosonic Temperature
OccTresh=0.1000E-4 # Occupation treshold (metallic bands)
NLogCPUs=0 # [PARALLEL] Live-timing CPU`s (0 for all)
DBsIOoff= "none" # [IO] Space-separated list of DB with NO I/O. DB=(DIP,X,HF,COLLs,J,GF,CARRIERs,W,SC,BS,ALL)
DBsFRAGpm= "none" # [IO] Space-separated list of +DB to be FRAG and -DB NOT to be FRAG. DB=(DIP,X,W,HF,COLLS,K,BS,QINDX,
FFTGvecs= 4381 RL # [FFT] Plane-waves
#WFbuffIO # [IO] Wave-functions buffered I/O
X_all_q_CPU= "" # [PARALLEL] CPUs for each role
X_all_q_ROLEs= "" # [PARALLEL] CPUs roles (q,k,c,v)
X_all_q_nCPU_LinAlg_INV= 1 # [PARALLEL] CPUs for Linear Algebra
X_Threads= 1 # [OPENMP/X] Number of threads for response functions
DIP_Threads= 1 # [OPENMP/X] Number of threads for dipoles
BS_CPU= "" # [PARALLEL] CPUs for each role
BS_ROLEs= "" # [PARALLEL] CPUs roles (k,eh,t)
BS_nCPU_LinAlg_INV= 1 # [PARALLEL] CPUs for Linear Algebra
BS_nCPU_LinAlg_DIAGO= 1 # [PARALLEL] CPUs for Linear Algebra
NonPDirs= "none" # [X/BSS] Non periodic chartesian directions (X,Y,Z,XY...)
RandQpts= 1000000 # [RIM] Number of random q-points in the BZ
RandGvec= 100 RL # [RIM] Coulomb interaction RS components
#QpgFull # [F RIM] Coulomb interaction: Full matrix
% Em1Anys
0.00 | 0.00 | 0.00 | # [RIM] X Y Z Static Inverse dielectric matrix
%
IDEm1Ref=0 # [RIM] Dielectric matrix reference component 1(x)/2(y)/3(z)
CUTGeo= "box Y" # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere X/Y/Z/XY..
% CUTBox
0.00000 | 30.00000 | 0.00000 | # [CUT] [au] Box sides
%
CUTRadius= 0.000000 # [CUT] [au] Sphere/Cylinder radius
CUTCylLen= 0.000000 # [CUT] [au] Cylinder length
#CUTCol_test # [CUT] Perform a cutoff test in R-space
Chimod= "Hartree" # [X] IP/Hartree/ALDA/LRC/BSfxc
BSEmod= "retarded" # [BSE] resonant/retarded/coupling
BSKmod= "SEX" # [BSE] IP/Hartree/HF/ALDA/SEX
BSSmod= "d" # [BSS] (h)aydock/(d)iagonalization/(i)nversion/(t)ddft`
BSENGexx= 40 Ry # [BSK] Exchange components
#ALLGexx # [BSS] Force the use use all RL vectors for the exchange part
BSENGBlk= 4 Ry # [BSK] Screened interaction block size
#WehDiag # [BSK] diagonal (G-space) the eh interaction
#WehCpl # [BSK] eh interaction included also in coupling
KfnQPdb= "E < gw/ndb.QP" # [EXTQP BSK BSS] Database
KfnQP_N= 1 # [EXTQP BSK BSS] Interpolation neighbours
% KfnQP_E
2.7900000 | 1.000000 | 1.000000 | # [EXTQP BSK BSS] E parameters (c/v) eV|adim|adim
%
KfnQP_Z= ( 1.000000 , 0.000000 ) # [EXTQP BSK BSS] Z factor (c/v)
KfnQP_Wv_E= 0.000000 eV # [EXTQP BSK BSS] W Energy reference (valence)
% KfnQP_Wv
0.00 | 0.00 | 0.00 | # [EXTQP BSK BSS] W parameters (valence) eV| eV|eV^-1
%
KfnQP_Wc_E= 0.000000 eV # [EXTQP BSK BSS] W Energy reference (conduction)
% KfnQP_Wc
0.00 | 0.00 | 0.00 | # [EXTQP BSK BSS] W parameters (conduction) eV| eV|eV^-1
%
Gauge= "length" # [BSE] Gauge (length|velocity)
#MetDamp # [BSE] Define \w+=sqrt(\w*(\w+i\eta))
DrudeWBS= ( 0.00 , 0.00 ) eV # [BSE] Drude plasmon
#Reflectivity # [BSS] Compute reflectivity at normal incidence
RandQpts= 1000000 # [RIM] Number of random q-points in the BZ
RandGvec= 100 RL # [RIM] Coulomb interaction RS components
#QpgFull # [F RIM] Coulomb interaction: Full matrix
% Em1Anys
0.00 | 0.00 | 0.00 | # [RIM] X Y Z Static Inverse dielectric matrix
%
IDEm1Ref=0 # [RIM] Dielectric matrix reference component 1(x)/2(y)/3(z)
CUTGeo= "box Y" # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere X/Y/Z/XY..
% CUTBox
0.00000 | 30.00000 | 0.00000 | # [CUT] [au] Box sides
%
CUTRadius= 0.000000 # [CUT] [au] Sphere/Cylinder radius
CUTCylLen= 0.000000 # [CUT] [au] Cylinder length
#CUTCol_test # [CUT] Perform a cutoff test in R-space
Chimod= "Hartree" # [X] IP/Hartree/ALDA/LRC/BSfxc
BSEmod= "retarded" # [BSE] resonant/retarded/coupling
BSKmod= "SEX" # [BSE] IP/Hartree/HF/ALDA/SEX
BSSmod= "d" # [BSS] (h)aydock/(d)iagonalization/(i)nversion/(t)ddft`
BSENGexx= 40 Ry # [BSK] Exchange components
#ALLGexx # [BSS] Force the use use all RL vectors for the exchange part
BSENGBlk= 4 Ry # [BSK] Screened interaction block size
#WehDiag # [BSK] diagonal (G-space) the eh interaction
#WehCpl # [BSK] eh interaction included also in coupling
KfnQPdb= "E < gw/ndb.QP" # [EXTQP BSK BSS] Database
KfnQP_N= 1 # [EXTQP BSK BSS] Interpolation neighbours
% KfnQP_E
2.7900000 | 1.000000 | 1.000000 | # [EXTQP BSK BSS] E parameters (c/v) eV|adim|adim
%
KfnQP_Z= ( 1.000000 , 0.000000 ) # [EXTQP BSK BSS] Z factor (c/v)
KfnQP_Wv_E= 0.000000 eV # [EXTQP BSK BSS] W Energy reference (valence)
% KfnQP_Wv
0.00 | 0.00 | 0.00 | # [EXTQP BSK BSS] W parameters (valence) eV| eV|eV^-1
%
KfnQP_Wc_E= 0.000000 eV # [EXTQP BSK BSS] W Energy reference (conduction)
% KfnQP_Wc
0.00 | 0.00 | 0.00 | # [EXTQP BSK BSS] W parameters (conduction) eV| eV|eV^-1
%
Gauge= "length" # [BSE] Gauge (length|velocity)
#MetDamp # [BSE] Define \w+=sqrt(\w*(\w+i\eta))
DrudeWBS= ( 0.00 , 0.00 ) eV # [BSE] Drude plasmon
#Reflectivity # [BSS] Compute reflectivity at normal incidence
BoseCut= 0.10000 # [BOSE] Finite T Bose function cutoff
% BEnRange
0.00000 | 10.00000 | eV # [BSS] Energy range
%
% BDmRange
0.10000 | 0.10000 | eV # [BSS] Damping range
%
BEnSteps= 300 # [BSS] Energy steps
% BLongDir
1.000000 | 0.000000 | 0.000000 | # [BSS] [cc] Electric Field
%
% BSEBands
7 | 13 | # [BSK] Bands range
%
% BSEEhEny
-1.000000 |-1.000000 | eV # [BSK] Electron-hole energy range
%
WRbsWF # [BSS] Write to disk excitonic the WFs
#BSSPertWidth # [BSS] Include QPs lifetime in a perturbative way
XfnQPdb= "E < gw/ndb.QP" # [EXTQP Xd] Database
XfnQP_N= 1 # [EXTQP Xd] Interpolation neighbours
% XfnQP_E
0.000000 | 1.000000 | 1.000000 | # [EXTQP Xd] E parameters (c/v) eV|adim|adim
%
XfnQP_Z= ( 1.000000 , 0.000000 ) # [EXTQP Xd] Z factor (c/v)
XfnQP_Wv_E= 0.000000 eV # [EXTQP Xd] W Energy reference (valence)
% XfnQP_Wv
0.00 | 0.00 | 0.00 | # [EXTQP Xd] W parameters (valence) eV| eV|eV^-1
%
XfnQP_Wc_E= 0.000000 eV # [EXTQP Xd] W Energy reference (conduction)
% XfnQP_Wc
0.00 | 0.00 | 0.00 | # [EXTQP Xd] W parameters (conduction) eV| eV|eV^-1
%
% QpntsRXp
1 | 60 | # [Xp] Transferred momenta
%
% BndsRnXp
7 | 13 | # [Xp] Polarization function bands
%
NGsBlkXp= 4 Ry # [Xp] Response block size
BoseCut= 0.10000 # [BOSE] Finite T Bose function cutoff
% BEnRange
0.00000 | 10.00000 | eV # [BSS] Energy range
%
% BDmRange
0.10000 | 0.10000 | eV # [BSS] Damping range
%
BEnSteps= 300 # [BSS] Energy steps
% BLongDir
1.000000 | 0.000000 | 0.000000 | # [BSS] [cc] Electric Field
%
% BSEBands
7 | 13 | # [BSK] Bands range
%
% BSEEhEny
-1.000000 |-1.000000 | eV # [BSK] Electron-hole energy range
%
WRbsWF # [BSS] Write to disk excitonic the WFs
#BSSPertWidth # [BSS] Include QPs lifetime in a perturbative way
XfnQPdb= "E < gw/ndb.QP" # [EXTQP Xd] Database
XfnQP_N= 1 # [EXTQP Xd] Interpolation neighbours
% XfnQP_E
0.000000 | 1.000000 | 1.000000 | # [EXTQP Xd] E parameters (c/v) eV|adim|adim
%
XfnQP_Z= ( 1.000000 , 0.000000 ) # [EXTQP Xd] Z factor (c/v)
XfnQP_Wv_E= 0.000000 eV # [EXTQP Xd] W Energy reference (valence)
% XfnQP_Wv
0.00 | 0.00 | 0.00 | # [EXTQP Xd] W parameters (valence) eV| eV|eV^-1
%
XfnQP_Wc_E= 0.000000 eV # [EXTQP Xd] W Energy reference (conduction)
% XfnQP_Wc
0.00 | 0.00 | 0.00 | # [EXTQP Xd] W parameters (conduction) eV| eV|eV^-1
%
% QpntsRXp
1 | 60 | # [Xp] Transferred momenta
%
% BndsRnXp
7 | 13 | # [Xp] Polarization function bands
%
NGsBlkXp= 4 Ry # [Xp] Response block size
CGrdSpXp= 100.0000 # [Xp] [o/o] Coarse grid controller
% EhEngyXp
-1.000000 |-1.000000 | eV # [Xp] Electron-hole energy range
%
% LongDrXp
0.1000E-4 | 0.000 | 0.000 | # [Xp] [cc] Electric Field
%
PPAPntXp= 27.21138 eV # [Xp] PPA imaginary energy
XTermKind= "none" # [X] X terminator ("none","BG" Bruneval-Gonze)
XTermEn= 40.81708 eV # [X] X terminator energy (only for kind="BG")
Best regards
Tianshu
Jilin University