Quantum Espresso Tutorial

Michael Atambo - Technical University of Kenya RASESMA 2023

Hexagonal Boron Nitride - hBN

Quantum Espresso Tutorial : Background

- DFT is a very popular approach to materials modelling at the atomic scale.
- It strikes a balance between computational cost and accuracy.
- What can we compute with DFT?
 - Total energy
 - Band structure
 - Forces
 - Elastic properties
 - Phonons
 - Electric polarizability, Raman and infrared Activity
 - Electron-Phonon coupung, superconducting T_c

Quantum Espresso Tutorial : Background

▶ There are limits to DFT course, since its a ground state theory,

- Time dependent properties
- Localized d & f states
- hint: (why are we here?)

Quantum Espresso Tutorial: the code

 Quantum Espresso is an integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the atomic scale

🖌 in

- It implements KS-DFT,
- Uses the Plane-wave and Pseudopotential method.

Quantum Espresso Tutorial: the distribution

► The code can be obtained freely from the QE website,

Development versions are at: [https://gitlab.com/QEF/q-e/tags]

- ► The code is FOSS, community contributions.
- [https://www.quantum-espresso.org/manifesto/]

Quantum Espresso Tutorial: Packages

Since its a suite of integrated codes, what are they?

- pw.x SCF, NSCF, Force minimization,
- dos.x Density of states (post processing)
- bands.x Band structure
- ph.x DFPT
- neb.x reaction pathways
- atomic.x atomic calculations

Quantum Espresso Tutorial: Packages and plugins

Quantum Espresso Tutorial: Outputs

What can QE do?

- Ground state calculations
- Structural optimization, MD,
- Electrochemistry and special boundary conditions
- Response properties (DFPT)
- ▶ ...

Full list: [https://www.quantum-espresso.org/what-can-qe-do/]

Quantum Espresso Tutorial: Installing

▶ QE provide a standard approach to compiling and installing the code

```
    ./configure
    make pw pp
    make install
```

- You of course need to have the prerequisites, such as a compiler, FFTW library, LAPACK/BLAS...
- We wont need to do the installation for the tutorial, this has been done for you.

Quantum Espresso Tutorial: Running a Calculation

▶ The code's executable are run from a typical shell environement,

1 ~\$ pw.x <scf_input.in> scf_output.out

It requires some preparation ahead of time

- choosing pseudopotentials
- the structure
- input parameters . . .

▶ The executable in QE will read data from an input file:

```
1 ~$ pw.x < scf_input.in</pre>
```

► The file has a very specific structure:

```
1 &NAMELIST1 ... /

2 &NAMELIST2 ... /

3 &NAMELIST3 ... /

4 &INPUT_CARD1

5 ...

6 &INPUT_CARD2

7 ...

8 ...
```


- NAMELIST are standard input constructs in F90
- They allow the specification of a value for an input variable when needed, and defaults otherwise.
- > The variables inside the nameslist can appear in any order.

```
1 &NAMELIST
2 example_variable2=XX,
3 example_variable1=YY
4 ...
```

- ► NAMELISTS are read in a specific order.
- ▶ NAMELISTS that are not required are ignored.

► INPUT_CARDS are specific to Quantum Espresso,

- They provide a means to specify data that is required, and is inconvenient to put in using NAMELIST format
- INPUT_CARDS Requires that data is in a specific order,

```
1 INPUT_CARDS card_format_specifier
2 data(1,1) data(1,2) data(1,3)...
```


► Mandatory NAMELISTS In Quantum Espreso are these three:

- 1 &CONTROL Input variables that control the calculation and the amount of $\rm I/O$ on disk and the screen
- 1 &SYSTEM input variables that specify the system under study
- 1 & ELECTRON input variables that control the algorithms used to reach self-consisten solution of KS equation for the electrons

Mandatory INPUT_CARDS In Quantum Espreso are three:

- 1 ATOMIC_SPECIES name, mass and pseudos for each species present
- 1 ATOMIC_POSITIONS type and coordinates of each atom in the unit cell
- 1 K_POINTS coordinates and weights of the k-points used for BZ integration

Quantum Espresso Tutorial: Understanding the calculation

- Energy Cutoff: controls the number of basis functions used to espand the wave function
- Pseudopotential: a modification of the ionic potential which allows one to greatly reduce the number of plane waves needed without changing the chemical properties of the atoms.
- **BZ** sampling we have to sample over the first BZ with a discrete grid.

Quantum Espresso Tutorial: Silicon Hands On Example

- ▶ We can run the Silicon example,
- Copy the files to your home directory and work from there:
- 1 -\$ cp -r /media/ictpuser/smr3694/ictptutor/YAMBO_TUTORIALS .
 2 -\$ cd YAMBO_TUTORIALS/Silicon/PWSCF
 - Follow the Tutorial on the Yambo Wiki: Click this [https://www.yambo-code.eu/wiki/index.php?title=Silicon]

Quantum Espresso Tutorial: Silicon Hands On Example

► Great,

- We will have a break before we do the next step,
- Learning to generate Yambo Inputs.

Generating Yambo Databases from PWSCF

- We will use Quantum Espresso to generate KS-DFT eigenvalues and WFs,
- It implements KS-DFT, among other things.
- Freely available (FOSS).
- Yambo uses the results of your PWSCF calculations as the starting point.
- You need to be able to run SCF+NSCF calculations before getting to G0W0 with yambo.
- we will follow the bulk h-BN tutorial on the Yambo Wiki [https://www.yambo-code.eu/wiki/index.php/Bulk_material:_h-BN]

Prerequisites

- **Quantum Espresso**, it is installed on the ICTP machines.
- Input files and pseudopotentials : please copy them from the tutor directory.
- > yambo: provides p2y, this is installed on the ICTP machines.

The System

- Bulk hBN is a HCP structured nitride,
- ▶ Four atoms per cell, 16 electrons in the unit cell,
- Lattice constants: a=4.176*a.u.*,c/a=2.582

Loggin In to Your ICTP Machine,

► Over SSH:

a ~\$ ssh -i .ssh/smryambo ictpuser@insXXXX...it

- where XXXX is a number, this should have been sent to you.
- Over the browser chrome/firefox/safari: https://insXXXXX.ictp.it
- enter the provided password.

Running Quantum espresso

Spack commands will be used to load the environement to have access to the pwscf executable, and later p2y

```
1 ~$ spack load quantum-espresso
2 ~$ spack load yambo
```


Retreving the files:

Copy the files to your home directory and work from there:

1 -\$ cp -r /media/ictpuser/smr3694/ictptutor/YAMBO_TUTORIALS .
2 -\$ cd YAMBO_TUTORIALS/hBN/PWSCF

DFT Calculations

- From the PWSCF directory, you will observe that you have the following:
- Inputs
- 2 Pseudos
- 3 References
- 4 hBN_2D_nscf.in
- 5 hBN_2D_scf.in

These are the required files for this exercise.

Executing the steps

Run the SCF and NSCF steps:

1 ~\$ mpirun -np 2 pw.x < hBN_scf.in > hBN_scf.out

▶ The SCF generates the ground state n(r), occupations, Fermi level...

~\$ mpirun -np 2 pw.x < hBN_nscf.in > hBN_nscf.out

The NSCF calculation will compute the KS eigenvalues and eigenvectors for all the requested **nbnd**

DFT Calculations

Some important entries in the PWSCF input file:

These are needed by yambo, see the wiki for more, and the QE documentation for more,

What do we have?

PWSCF creates a **hBN.save** dir,

This is where we will work from for the next task.

```
1 ls hBN.save/
2 B.pz-vbc.UPF charge-density.dat wfc1.dat wfc11.dat wfc13.dat
wfc2.dat wfc4.dat wfc6.dat wfc8.dat
3 N.pz-vbc.UPF data-file-schema.xml wfc10.dat wfc12.dat wfc14.dat
wfc3.dat wfc5.dat wfc7.dat wfc9.dat
```


Conversion to Yambo Format: P2Y

Yambo provides the p2y executable that can converd PWSCF outputs to YAMBO databases.

- It requires no input specific input file...
- How to do that:

```
1 $ cd hBN.save/
2 $ p2y
3 ...
4 ...
5 <---> == DB3 (PseudoPotential) ... done ==
6 <---> == P2Y completed ==
7 $
```


SAVE Directory

p2y generates a SAVE directory

```
1 $ 1s
2 B.pz-vbc.UPF SAVE data-file-schema.xml wfc10.dat
....
3 $ 1s SAVE
4 ns.db1 ns.kb_pp_pwscf_fragment_6 ns.wf_fragments_11_1 ns.
    wf_fragments_3_1 ...
```

What are these files?

yambo -D

The n* files are netCDF formated files, you need to use the yambo -D command to check the information they hold:

```
$ yambo -D
 [RD./SAVE//ns.db1
           -----
    1-----
  Bands
4
                                    :
                                     100
 K-points
                                    : 14
  G-vectors
                                      8029 [RL space
6
                                    •
    ٦
7
 . . .
8
 . . .
 [RD./SAVE//ns.kb_pp_pwscf
9
    1-----
                 10
  Fragmentation
                                    : yes
11 - S/N 004626 ----- v
     .05.01.00 r.21422
12 $
```


What next?

The convention for moving from here, is usually to take the SAVE directory somewhere else, where you will proceed with the rest of the G0W0 calculations

P2Y advanced usage

If you need to know more about how P2Y can be used, refer to this page on the wiki: Conversion to Yambo Format

Next

- ▶ You now have the neccessary inputs for G0W0 and more
- Before doing the G0W0 runlevel, you need to initialize first
- Then generate an input
- This will be done in the first G0W0 exercise

Thanks

• This is as much as we need for the **PWSCF** tutorial.

► Thank you!

della Materia

