
Dr
aft

The Self-Energy and The Dyson Equation The Quasi-Particle Equation Implementation Plasmon Pole Approximation, GW

GW Common Approximations

Atambo, Michael

The Technical University: RASESMA 2023

February 14, 2023



Dr
aft

The Self-Energy and The Dyson Equation The Quasi-Particle Equation Implementation Plasmon Pole Approximation, GW

Outline

1 The Self-Energy and The Dyson Equation

2 The Quasi-Particle Equation

3 Implementation

4 Plasmon Pole Approximation,

5 GW



Dr
aft

The Self-Energy and The Dyson Equation The Quasi-Particle Equation Implementation Plasmon Pole Approximation, GW

The Dyson Equation

Getting back to the idea of the Greens function as a probability
amplitude a propagation process.

How does the propagation from r2 to r1 happen?

G0

Σ

G0
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The Dyson Equation

In general the scattering path for an interacting G is given by

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + . . .

Or, more compactly,

G = G0 + G0ΣG

This equation shows the relationship between the interacting system
G and the non-interacting G0

G0, can be approximated from
DFT
HF …

In typical GW@LDA implementations
The Dyson equation is not solved in this formulation.
Its written in a different form.
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The Dyson Equation can be written as

[−1
2∇

2 + VH + Vext ]Ψi(x) +

∫
Σ(x, x′;Ei)Ψi(x′)dx′ = EiΨi(x)

This is a single-particle equation of motion, known as the quasiparticle
equation
This looks very familiar to KS-DFT,
Its however a non-linear differential equation,
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The Dyson and Quasiparticle equations: Perturbation

[−1
2∇

2 + VH + Vext ]Ψi(x)+
∫

ΣGW (x, x′;Ei)Ψi(x′)dx′ = EGW
i Ψi(x)

[−1
2∇

2 + VH + Vext ]Ψi(x)+ VxcΨi = EKS
i Ψi(x)

Laid out this way, the parallels between the Quasiparticle equation
and the KS equation is clear.
These are true excitation energies
Excitation energies of fictitious states,

This similarity makes it a small step to use perturbation theory.

EGW
i = εKS

i +
〈
ψi |ΣGW (EGW

i )− Vxc |ψi
〉

or as commonly implemented, the linearized solution

EGW
i = εKS

i + Zi
〈
ψi |ΣGW (EKS

i )− Vxc |ψi
〉
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Zi = (1 −
〈
ψi |ΣGW

i (EKS
i )|ψi

〉
)−1

Z: the renomalization factor.
This gives the proportion of the spectral weight under the
quasiparticle peak.

Back to The Self Energy
Can be decomposed into:
The exchange term
and the correlation terms:

ΣGW (ω) = iG0W = iG0ν + iG0(W − ν) = Σx − Σc(ω)
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The exchange self-energy: Σx

Σx(r1, r2, ω) =
i~
2π

∫
G0(r1, r2, ω + ω′)ν(r1, r2)e iω′νdω′

this the Fock term from HF self-energy, and can be rewritten:

Σx(r1, r2) =< ψi |Σx |ψi >= − e2

4πε0

occ∑
j

∫
ψ∗

i (r1)ψj(r2)ψ
∗
j (r2)ψi(r2)dr1dr2

this can be integrated analytically.
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and the correlation self-energy: Σc

Σc(r1, r2, ω) =
i~
2π

∫
G0(r1, r2, ω + ω′)[W (r1, r2, ω

′)− ν(r1, r2)]e iω′νdω′

Can be re-written as:

Σc(r1, r2) =< ψi |Σc |ψi >= − e2

4πε0

occ∑
j

∫
ψ∗

i (r1)ψj(r2)ψ
∗
j (r2)ψi(r2)dr1dr2

this can only be computed numerically, this is quite expensive to do.
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Lets rewrite both in the plane wave representation:
the exchange part,

Σx
nk =< nk|Σx(r1, r2)|nk >= −

∑
n1

∫
BZ

dq
(2π)3

∑
G

4π
|q + G|2

|ρnm(k,q,G)|2fn1k1 ,

where, ρnm(k,q,G) =< nk|e i(q+G·r)|n1k1 >,

and the correlation part:

Σc
nk(ω) =< nk|Σc(r1, r2;ω)|nk >

= i
∑
n1

∫
BZ

dq
(2π)3

∑
G,G′

4π
|q + G|2

ρnn1(k,q,G)ρ∗nn1
(k,q,G′)

×
∫

dω′G0
mk−q(ω − ω′)ε−1

GG′(q, ω′)
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The energy integral can be computed once the inverse dielectric function
is known. ε follows from the reducible response function χ,

ε−1
GG′(q, ω) = δGG′ +

4π
|q + G|2

χGG′(q, ω)

χ is computed within the RPA, for the GW approximation,

χGG′(q, ω) = [δGG′ − 4π
|q + G|2

χ0
GG′′(q, ω)]−1χ0

G′′G′(q, ω).

and the non-interacting response function χ0
GG′′ , can be computed from

G0,

χ0
G′′G′(q, ω) = 2

∑
nn′

∫
BZ

dk
(π)3 ρ

∗
n′nk(q,G)ρn′nk(q,G′)fnk−q(1 − fn′k)

×
[

1
ω + εnk−q − εn′k + i0+ − 1

ω + εn′k − εnk−q − i0+

]
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The PPA
Lets take a look at that energy integral,∫

dω′G0
mk−q(ω − ω′)ε−1

GG′(q, ω′)

A numerical integration of this would require the inversion of ε for
many frequency points.
This is something that’s expensive,
So we typically use the Plasmon Pole Approximation,

In the PPA, ε−1 is approximated by a single pole function,

ε−1GG′(q, ω) ≈ δGG′ + RGG′(q)
[(
ω − ΩGG′(q) + i0+

)−1

(
ω +ΩGG′(q)− i0+

)−1
]
.

the residuals RGG′ and energies ΩGG′ , are found in turn by imposing a
condition that the PPA reproduces the exact ε−1 function at two
frequencies ω = 0 and a user defined value, ω = iEPPA.
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finally, back to the begining, and ready to calculate:
We can now take the Taylor expansion of the SE about the KS energy,

Gi(ω) ≈ Zi

[
fi

ω − EGW
i + i0+

+
1 − fi

ω − EGW
i + i0+

]
with:

EGW
i = εKS

i + Zi
〈
ψi |ΣGW (EKS

i )− Vxc |ψi
〉

and

Zi = (1 −
〈
ψi |ΣGW

i (EKS
i )|ψi

〉
)−1

After all this work, what do we get?
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The results, (van Schilfgaarde, 2008)

This is a good description for one 1-particle G.
We get back accurate quasiparticle energies, corrected band gaps,
lifetime broadening, plasma satellites etc.
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G0W0 results are quite acceptable, any issues?
Convergence needs to be perfomed with caution, the typical case is
ZnO, (Phys. Rev. B 84, 039906)

False convergence w.r.t. bands
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