BSE directly with the dielectric constant calculated in GW
Posted: Fri May 31, 2013 10:42 am
I want to do a BSE for 2D metallic silicene directly with the dielectric constant calculated in the GW calculation according to this post:viewtopic.php?f=13&t=436
Due to the use of the latest version of yambo.3.4.0, I generate the yambo.in by yambo -o b -k sex -y d -c -p p as followed:
optics # [R OPT] Optics
bse # [R BSE] Bethe Salpeter Equation.
bsk # [R BSK] Bethe Salpeter Equation kernel
bss # [R BSS] Bethe Salpeter Equation solver
ppa # [R Xp] Plasmon Pole Approximation
rim_cut # [R RIM CUT] Coulomb interaction
em1d # [R Xd] Dynamical Inverse Dielectric Matrix
em1s # [R Xs] Static Inverse Dielectric Matrix
RandQpts= 3000000 # [RIM] Number of random q-points in the BZ
RandGvec= 1 RL # [RIM] Coulomb interaction RS components
CUTGeo= "box z" # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere
% CUTBox
0.00000 | 0.00000 | 12.00000 | # [CUT] [au] Box sides
%
CUTRadius= 0.000000 # [CUT] [au] Sphere/Cylinder radius
CUTCylLen= 0.000000 # [CUT] [au] Cylinder length
Chimod= "Hartree" # [X] IP/Hartree/ALDA/LRC/BSfxc
BSEmod= "causal" # [BSE] resonant/causal/coupling
BSKmod= "SEX" # [BSE] IP/Hartree/HF/ALDA/SEX
BSSmod= "d" # [BSS] (h)aydock/(d)iagonalization/(i)nversion/(t)ddft`
BSENGexx= 30249 RL # [BSK] Exchange components
BSENGBlk= 205 RL # [BSK] Screened interaction block size
#WehCpl # [BSK] eh interaction included also in coupling
% BEnRange
0.00000 | 10.00000 | eV # [BSS] Energy range
%
% BDmRange
0.10000 | 0.10000 | eV # [BSS] Damping range
%
BEnSteps= 100 # [BSS] Energy steps
% BLongDir
1.000000 | 0.000000 | 0.000000 | # [BSS] [cc] Electric Field
%
% BSEBands
1 | 20 | # [BSK] Bands range
%
% QpntsRXs
1 | 43 | # [Xs] Transferred momenta
%
% BndsRnXs
1 | 20 | # [Xs] Polarization function bands
%
NGsBlkXs= 205 RL # [Xs] Response block size
% LongDrXs
0.1000E-4 | 0.000 | 0.000 | # [Xs] [cc] Electric Field
%
% QpntsRXp
1 | 43 | # [Xp] Transferred momenta
%
% BndsRnXp
1 | 20 | # [Xp] Polarization function bands
%
NGsBlkXp= 1 RL # [Xp] Response block size
% LongDrXp
1.000000 | 0.000000 | 0.000000 | # [Xp] [cc] Electric Field
%
PPAPntXp= 27.21138 eV # [Xp] PPA imaginary energy
(1) Are there some errs in the yambo.in? And how to process smoothly? When I do such calculation, the job crashed with some err information like this:
<01m-30s> Xo@q[42] 1-2 | | [000%] --(E) --(X)
<01m-31s> P01: Xo@q[42] 1-2 |####################| [100%] 01s(E) 01s(X)
<01m-32s> X @q[42] 1-2 | | [000%] --(E) --(X)
<01m-32s> P01: X @q[42] 1-2 |####################| [100%] --(E) --(X)
<01m-32s> [X-CG] R(p) Tot o/o(of R) : 3256 11202 100
<01m-32s> Xo@q[43] 1-2 | | [000%] --(E) --(X)
<01m-33s> P01: Xo@q[43] 1-2 |####################| [100%] 01s(E) 01s(X)
<01m-33s> X @q[43] 1-2 | | [000%] --(E) --(X)
<01m-33s> P01: X @q[43] 1-2 |####################| [100%] --(E) --(X)
<01m-33s> [07.01] Main loop
<01m-33s> [WARNING]Fractional e/h occupations. Causal BSEmode forced.
<01m-33s> [WARNING] The system is a metal but Drude term not included.
<01m-33s> [08] Bethe-Salpeter Kernel
<01m-33s> [BSE] Kernel dimension : 2344
<01m-33s> [08.01] Screened interaction header I/O
<01m-33s> [WARNING]BS section skipped. PP/Em1s DB does not fit/exist
<01m-33s> [09] BSE solver(s)
<01m-33s> [10] Game Over & Game summary
(2) If I generate yambo.in by unadding -p p, this job can be done well. While, this "[WARNING]Fractional e/h occupations. Causal BSEmode forced." still existed, what's the reason. I note a reference: Wei, W.; Dai, Y.; Huang, B.; Jacob, T. Phys. Chem. Chem. Phys. 2013, 15, 8789–8794. In this ref., it states that the "Only the resonant part of the Bethe–Salpeter Hamiltonian is considered, i.e., Tamm–Dancoff approximation", why I cannot use this approximation for the same 2D silicene system?
Due to the use of the latest version of yambo.3.4.0, I generate the yambo.in by yambo -o b -k sex -y d -c -p p as followed:
optics # [R OPT] Optics
bse # [R BSE] Bethe Salpeter Equation.
bsk # [R BSK] Bethe Salpeter Equation kernel
bss # [R BSS] Bethe Salpeter Equation solver
ppa # [R Xp] Plasmon Pole Approximation
rim_cut # [R RIM CUT] Coulomb interaction
em1d # [R Xd] Dynamical Inverse Dielectric Matrix
em1s # [R Xs] Static Inverse Dielectric Matrix
RandQpts= 3000000 # [RIM] Number of random q-points in the BZ
RandGvec= 1 RL # [RIM] Coulomb interaction RS components
CUTGeo= "box z" # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere
% CUTBox
0.00000 | 0.00000 | 12.00000 | # [CUT] [au] Box sides
%
CUTRadius= 0.000000 # [CUT] [au] Sphere/Cylinder radius
CUTCylLen= 0.000000 # [CUT] [au] Cylinder length
Chimod= "Hartree" # [X] IP/Hartree/ALDA/LRC/BSfxc
BSEmod= "causal" # [BSE] resonant/causal/coupling
BSKmod= "SEX" # [BSE] IP/Hartree/HF/ALDA/SEX
BSSmod= "d" # [BSS] (h)aydock/(d)iagonalization/(i)nversion/(t)ddft`
BSENGexx= 30249 RL # [BSK] Exchange components
BSENGBlk= 205 RL # [BSK] Screened interaction block size
#WehCpl # [BSK] eh interaction included also in coupling
% BEnRange
0.00000 | 10.00000 | eV # [BSS] Energy range
%
% BDmRange
0.10000 | 0.10000 | eV # [BSS] Damping range
%
BEnSteps= 100 # [BSS] Energy steps
% BLongDir
1.000000 | 0.000000 | 0.000000 | # [BSS] [cc] Electric Field
%
% BSEBands
1 | 20 | # [BSK] Bands range
%
% QpntsRXs
1 | 43 | # [Xs] Transferred momenta
%
% BndsRnXs
1 | 20 | # [Xs] Polarization function bands
%
NGsBlkXs= 205 RL # [Xs] Response block size
% LongDrXs
0.1000E-4 | 0.000 | 0.000 | # [Xs] [cc] Electric Field
%
% QpntsRXp
1 | 43 | # [Xp] Transferred momenta
%
% BndsRnXp
1 | 20 | # [Xp] Polarization function bands
%
NGsBlkXp= 1 RL # [Xp] Response block size
% LongDrXp
1.000000 | 0.000000 | 0.000000 | # [Xp] [cc] Electric Field
%
PPAPntXp= 27.21138 eV # [Xp] PPA imaginary energy
(1) Are there some errs in the yambo.in? And how to process smoothly? When I do such calculation, the job crashed with some err information like this:
<01m-30s> Xo@q[42] 1-2 | | [000%] --(E) --(X)
<01m-31s> P01: Xo@q[42] 1-2 |####################| [100%] 01s(E) 01s(X)
<01m-32s> X @q[42] 1-2 | | [000%] --(E) --(X)
<01m-32s> P01: X @q[42] 1-2 |####################| [100%] --(E) --(X)
<01m-32s> [X-CG] R(p) Tot o/o(of R) : 3256 11202 100
<01m-32s> Xo@q[43] 1-2 | | [000%] --(E) --(X)
<01m-33s> P01: Xo@q[43] 1-2 |####################| [100%] 01s(E) 01s(X)
<01m-33s> X @q[43] 1-2 | | [000%] --(E) --(X)
<01m-33s> P01: X @q[43] 1-2 |####################| [100%] --(E) --(X)
<01m-33s> [07.01] Main loop
<01m-33s> [WARNING]Fractional e/h occupations. Causal BSEmode forced.
<01m-33s> [WARNING] The system is a metal but Drude term not included.
<01m-33s> [08] Bethe-Salpeter Kernel
<01m-33s> [BSE] Kernel dimension : 2344
<01m-33s> [08.01] Screened interaction header I/O
<01m-33s> [WARNING]BS section skipped. PP/Em1s DB does not fit/exist
<01m-33s> [09] BSE solver(s)
<01m-33s> [10] Game Over & Game summary
(2) If I generate yambo.in by unadding -p p, this job can be done well. While, this "[WARNING]Fractional e/h occupations. Causal BSEmode forced." still existed, what's the reason. I note a reference: Wei, W.; Dai, Y.; Huang, B.; Jacob, T. Phys. Chem. Chem. Phys. 2013, 15, 8789–8794. In this ref., it states that the "Only the resonant part of the Bethe–Salpeter Hamiltonian is considered, i.e., Tamm–Dancoff approximation", why I cannot use this approximation for the same 2D silicene system?