EELS for Benzene with Abinit+Yambo
Posted: Wed Oct 10, 2012 9:28 am
Dear Yambo List,
I am trying to simulate experimental EELS spectra of benzene Molecule with abinit + Yambo.
The EELS spectrum is plotted by, Imaginary[1/[calculated Epsilon (or dielectric function)]],
as it is mentioned in: http://www.yambo-code.org/doc/docs/doc_LR.php
But also from the site, it states that: "We also note that Eq. (2) is only valid for angular resolved EELS on bulk materials and not for spatially resolved EELS on isolated nanoobjects.(probably molecules ?)"
So can I use abinit+Yambo to simulate EELS spectrum? Or is it still have some tricks? [our plan is to simulate, the plasmon oscillations wrt. the EELS peak especially in the core region].
Many thanks in advance,
Krishna Mohan G P
------------------ ------------------ ------------------ ------------------
Please note that:
am using Yambo in this order: with kss_o_KSS,
[1] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/a2y -F kss_o_KSS
[2] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo
[3] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo -o c # to create yambo.in
[4] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo
and finally, I got a EELS at ~ 5eV (which is something similar to the Benzene pi-pi* transition!).
[2] Files used for EELS
--- --- --- --- --- --- --- --- ---
band.files [just for band calc]
::::::::::::::
band.in
band.out
band_i
band_o
band_t
06c.pbe_hgh
01h.pbe_hgh
***************************************************
::::::::::::::
relax.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
xangst 0.000 1.390 0.000
1.204 0.695 0.000
0.000 -1.390 0.000
-1.204 -0.695 0.000
1.204 -0.695 0.000
-1.204 0.695 0.000
0.000 2.470 0.000
2.139 1.235 0.000
0.000 -2.470 0.000
-2.139 -1.235 0.000
2.139 -1.235 0.000
-2.139 1.235 0.000
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
kptopt 0
nkpt 1
kptnrm 1
ecut 20
ixc 11
iscf 7
npulayit 7
wtk 1.0
nstep 150
diemac 12.0
toldfe 1.0d-7
symmorphi 0
ionmov 3
ntime 10
::::::::::::::
band.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
xangst 2.8538984130E-21 1.4178793921E+00 0.0000000000E+00
1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 -1.4178793921E+00 0.0000000000E+00
-1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
-1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 2.5166752386E+00 0.0000000000E+00
2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
2.8538984114E-21 -2.5166752386E+00 0.0000000000E+00
-2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
-2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
ndtset 2
# Definition of the k-point grids
kptopt1 0
nkpt1 1
kptnrm1 1
# output the density of states
prtdos1 1
# output the charge density
prtden1 1
# Definition of the planewave basis set
ecut 20 # Maximal kinetic energy cut-off, in Hartree
ixc 11 # XC potential Perdew-Zunger
# Definition of the SCF procedure
nstep 50 # Maximal number of SCF cycles
toldfe1 1.0d-7 # Will stop when this tolerance is achieved on total energy
diemac 12.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
# function used as the standard preconditioner
# is described in the "dielng" input variable section.
# Here, we follow the prescription for bulk silicon.
# Calculation of the band structure
iscf2 -2 # non self consistent calculation
getden2 -1 # read the charge density
kptopt2 -7 # 7 segments
ndivk2 4 21 16 8 18 11 21 # number of divisions of the segments
kptbounds2
0.25 0.625 0.625 # U
0.25 0.5 0.75 # W
0 0 0 # Gamma
0 0.5 0.5 # X
0.25 0.5 0.75 # W
0 0.5 0 # L
0 0 0 # Gamma
0.375 0.375 0.75 # K
tolwfr2 1.0d-12 # tolerance on wavefunction squared residual
nband2 34 # number of bands *** *** since 17band found in the relax.out
enunit2 1 # Will output the eigenenergies in eV
prtvol2 2 # output printing option
symmorphi 0
occopt1 3 # otherwise ERROR ...
::::::::::::::
kss.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
xangst 2.8538984130E-21 1.4178793921E+00 0.0000000000E+00
1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 -1.4178793921E+00 0.0000000000E+00
-1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
-1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 2.5166752386E+00 0.0000000000E+00
2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
2.8538984114E-21 -2.5166752386E+00 0.0000000000E+00
-2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
-2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
# Definition of the planewave basis set
ecut 20 # Maximal kinetic energy cut-off, in Hartree
ixc 11 # XC potential Perdew-Zunger
# Definition of the SCF procedure
nstep 50 # Maximal number of SCF cycles
#toldfe 1.0d-7 # Will stop when this tolerance is achieved on total energy
diemac 12.0 # Although this is not mandatory, it is worth to
ngfft 80 80 80
# Definition of parameters for the calculation of the kss file
iscf -2 # non self-consistency, read previous density file
#getden 1 # read the density file
prtvol 2 # output printing option
tolwfr 1.0d-12 # tolerance on wavefunction squared residual
nband 21 # number of bands for calculations
nbandkss 21 # number of bands for eigenstate output (_KSS file)
nbdbuf 10 # number of bands for the buffer
npwkss 3000 # number of planewave components for eigenstate output
kssform 3 # kss in double precision
symmorphi 0
istwfk 1
paral_kgb=0
# Definition of the k-point grids
kptopt 0
nkpt 1
kptnrm 1
I am trying to simulate experimental EELS spectra of benzene Molecule with abinit + Yambo.
The EELS spectrum is plotted by, Imaginary[1/[calculated Epsilon (or dielectric function)]],
as it is mentioned in: http://www.yambo-code.org/doc/docs/doc_LR.php
But also from the site, it states that: "We also note that Eq. (2) is only valid for angular resolved EELS on bulk materials and not for spatially resolved EELS on isolated nanoobjects.(probably molecules ?)"
So can I use abinit+Yambo to simulate EELS spectrum? Or is it still have some tricks? [our plan is to simulate, the plasmon oscillations wrt. the EELS peak especially in the core region].
Many thanks in advance,
Krishna Mohan G P
------------------ ------------------ ------------------ ------------------
Please note that:
am using Yambo in this order: with kss_o_KSS,
[1] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/a2y -F kss_o_KSS
[2] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo
[3] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo -o c # to create yambo.in
[4] /scratch3/krishnan/Scientific/abinitBin_16_etsf/bin/yambo
and finally, I got a EELS at ~ 5eV (which is something similar to the Benzene pi-pi* transition!).
[2] Files used for EELS
--- --- --- --- --- --- --- --- ---
band.files [just for band calc]
::::::::::::::
band.in
band.out
band_i
band_o
band_t
06c.pbe_hgh
01h.pbe_hgh
***************************************************
::::::::::::::
relax.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
xangst 0.000 1.390 0.000
1.204 0.695 0.000
0.000 -1.390 0.000
-1.204 -0.695 0.000
1.204 -0.695 0.000
-1.204 0.695 0.000
0.000 2.470 0.000
2.139 1.235 0.000
0.000 -2.470 0.000
-2.139 -1.235 0.000
2.139 -1.235 0.000
-2.139 1.235 0.000
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
kptopt 0
nkpt 1
kptnrm 1
ecut 20
ixc 11
iscf 7
npulayit 7
wtk 1.0
nstep 150
diemac 12.0
toldfe 1.0d-7
symmorphi 0
ionmov 3
ntime 10
::::::::::::::
band.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
xangst 2.8538984130E-21 1.4178793921E+00 0.0000000000E+00
1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 -1.4178793921E+00 0.0000000000E+00
-1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
-1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 2.5166752386E+00 0.0000000000E+00
2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
2.8538984114E-21 -2.5166752386E+00 0.0000000000E+00
-2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
-2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
ndtset 2
# Definition of the k-point grids
kptopt1 0
nkpt1 1
kptnrm1 1
# output the density of states
prtdos1 1
# output the charge density
prtden1 1
# Definition of the planewave basis set
ecut 20 # Maximal kinetic energy cut-off, in Hartree
ixc 11 # XC potential Perdew-Zunger
# Definition of the SCF procedure
nstep 50 # Maximal number of SCF cycles
toldfe1 1.0d-7 # Will stop when this tolerance is achieved on total energy
diemac 12.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
# function used as the standard preconditioner
# is described in the "dielng" input variable section.
# Here, we follow the prescription for bulk silicon.
# Calculation of the band structure
iscf2 -2 # non self consistent calculation
getden2 -1 # read the charge density
kptopt2 -7 # 7 segments
ndivk2 4 21 16 8 18 11 21 # number of divisions of the segments
kptbounds2
0.25 0.625 0.625 # U
0.25 0.5 0.75 # W
0 0 0 # Gamma
0 0.5 0.5 # X
0.25 0.5 0.75 # W
0 0.5 0 # L
0 0 0 # Gamma
0.375 0.375 0.75 # K
tolwfr2 1.0d-12 # tolerance on wavefunction squared residual
nband2 34 # number of bands *** *** since 17band found in the relax.out
enunit2 1 # Will output the eigenenergies in eV
prtvol2 2 # output printing option
symmorphi 0
occopt1 3 # otherwise ERROR ...
::::::::::::::
kss.in
::::::::::::::
acell 10 10 10 Angstrom
rprim 1 0 0
0 1 0
0 0 1
ntypat 2
znucl 6 1
natom 12
typat 1 1 1 1 1 1 2 2 2 2 2 2
xangst 2.8538984130E-21 1.4178793921E+00 0.0000000000E+00
1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 -1.4178793921E+00 0.0000000000E+00
-1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
1.2270791794E+00 -7.0935608787E-01 0.0000000000E+00
-1.2270791794E+00 7.0935608787E-01 0.0000000000E+00
2.8538984130E-21 2.5166752386E+00 0.0000000000E+00
2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
2.8538984114E-21 -2.5166752386E+00 0.0000000000E+00
-2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
2.1795461820E+00 -1.2568551003E+00 0.0000000000E+00
-2.1795461820E+00 1.2568551003E+00 0.0000000000E+00
# Definition of the planewave basis set
ecut 20 # Maximal kinetic energy cut-off, in Hartree
ixc 11 # XC potential Perdew-Zunger
# Definition of the SCF procedure
nstep 50 # Maximal number of SCF cycles
#toldfe 1.0d-7 # Will stop when this tolerance is achieved on total energy
diemac 12.0 # Although this is not mandatory, it is worth to
ngfft 80 80 80
# Definition of parameters for the calculation of the kss file
iscf -2 # non self-consistency, read previous density file
#getden 1 # read the density file
prtvol 2 # output printing option
tolwfr 1.0d-12 # tolerance on wavefunction squared residual
nband 21 # number of bands for calculations
nbandkss 21 # number of bands for eigenstate output (_KSS file)
nbdbuf 10 # number of bands for the buffer
npwkss 3000 # number of planewave components for eigenstate output
kssform 3 # kss in double precision
symmorphi 0
istwfk 1
paral_kgb=0
# Definition of the k-point grids
kptopt 0
nkpt 1
kptnrm 1