When I use the RIM method, the following parameters appear in the input file.
RandQpts=1000000 # [RIM] Number of random q-points in the BZ
RandGvec= 100 RL # [RIM] Coulomb interaction RS components
CUTGeo= "slab z" # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere/ws/slab X/Y/Z/XY..
% CUTBox
0.000000 | 0.000000 | 0.000000 | # [CUT] [au] Box sides
%
How do I know if the above Settings are reasonable? Is it determined by whether the RIM in the output file is equal to the Real RIM?
What are the criteria to ensure convergence?
Best,[04.02] RIM integrals
=====================
Gamma point sphere radius : 0.014163 [a.u.]
Points outside the sphere : 800143
[Int_sBZ(q=0) 1/q^2]*(Vol_sBZ)^(-1/3) =: 7.084143
should be <: 7.795600
[WR./all_Bz//ndb.RIM]-----------------------------------------------------------
Brillouin Zone Q/K grids (IBZ/BZ) : 164 324 164 324
Coulomb cutoff potential : none
Coulombian RL components : 101
Coulombian diagonal components : yes
RIM random points : 1000000
RIM RL volume [a.u.] : 0.128822
Real RL volume [a.u.] : 0.128530
Eps^-1 reference component : 0
Eps^-1 components : 0.000000 0.000000 0.000000
RIM anysotropy factor : 0.000000
- S/N 009635 ---------------------------------------------- v.05.02.01 r.22792 -
Summary of Coulomb integrals for non-metallic bands |Q|[au] RIM/Bare
Q [1] 0.100000E-4 0.908736 * Q [11] 0.060319 0.841699
Q [2] 0.060319 0.841971 * Q [28] 0.060319 0.841847
Q [27] 0.104475 0.960277 * Q [12] 0.104475 0.960483
Q [46] 0.104475 0.960364 * Q [29] 0.120638 0.979271
Q [45] 0.120638 0.979216 * Q [3] 0.120638 0.979230
Q [26] 0.159589 1.000904 * Q [63] 0.159589 1.001072
Q [13] 0.159589 1.001111 * Q [64] 0.159589 1.001093
Q [44] 0.159589 1.000998 * Q [30] 0.159589 1.001128
Q [4] 0.180956 1.005550 * Q [47] 0.180956 1.005623
Q [62] 0.180956 1.005556 * Q [43] 0.208950 1.007883
Q [31] 0.208950 1.008024 * Q [81] 0.208950 1.008004
Q [48] 0.217483 1.008311 * Q [61] 0.217483 1.008214
Q [82] 0.217483 1.008299 * Q [14] 0.217483 1.008275
Q [25] 0.217483 1.008107 * Q [80] 0.217483 1.008267
Q [5] 0.241275 1.008425 * Q [65] 0.241275 1.008496
Q [79] 0.241275 1.008436 * Q [60] 0.262924 1.008129
Q [49] 0.262924 1.008234 * Q [32] 0.262924 1.008219
Q [42] 0.262924 1.008092 * Q [99] 0.262924 1.008225
Q [98] 0.262924 1.008213 * Q [66] 0.276415 1.007979
Q [78] 0.276415 1.007903 * Q [15] 0.276416 1.007937
Q [24] 0.276416 1.007801 * Q [97] 0.276416 1.007940
Q [100] 0.276416 1.007975 * Q [6] 0.301594 1.007357
Q [96] 0.301594 1.007369 * Q [83] 0.301594 1.007422
Q [116] 0.313426 1.007139 * Q [59] 0.313426 1.007043
Q [50] 0.313426 1.007142 * Q [117] 0.319177 1.007019
Q [115] 0.319177 1.007000 * Q [41] 0.319177 1.006888
Q [33] 0.319177 1.007000 * Q [77] 0.319177 1.006940
Q [67] 0.319177 1.007022 * Q [23] 0.335841 1.006507
Q [118] 0.335841 1.006663 * Q [114] 0.335841 1.006629
Q [16] 0.335841 1.006622 * Q [84] 0.335841 1.006664
Q [95] 0.335841 1.006601 * Q [7] 0.361913 1.006089
Q [101] 0.361913 1.006148 * Q [113] 0.361913 1.006102
Q [76] 0.366905 1.005967 * Q [68] 0.366905 1.006048
Q [58] 0.366905 1.005947 * Q [51] 0.366905 1.006039
Q [134] 0.366905 1.006047 * Q [133] 0.366905 1.006040
Q [34] 0.376691 1.005855 * Q [40] 0.376691 1.005757
Q [135] 0.376691 1.005880 * Q [132] 0.376691 1.005859
Q [94] 0.376691 1.005814 * Q [85] 0.376691 1.005881
Q [112] 0.395537 1.005524 * Q [102] 0.395537 1.005578
Q [136] 0.395537 1.005577 * Q [131] 0.395537 1.005545
Q [22] 0.395537 1.005438 * Q [17] 0.395537 1.005536
Q [75] 0.417901 1.005168 * Q [69] 0.417901 1.005244
Q [151] 0.417901 1.005246 * Q [57] 0.422232 1.005096
Q [119] 0.422232 1.005200 * Q [52] 0.422232 1.005179
Q [93] 0.422232 1.005126 * Q [8] 0.422232 1.005147
Q [152] 0.422232 1.005194 * Q [86] 0.422232 1.005193
Q [150] 0.422232 1.005183 * Q [130] 0.422232 1.005159
Q [111] 0.434965 1.004980 * Q [103] 0.434965 1.005037
Q [153] 0.434965 1.005037 * Q [149] 0.434965 1.005016
Q [39] 0.434965 1.004923 * Q [35] 0.434965 1.005009
Q [129] 0.455397 1.004760 * Q [120] 0.455397 1.004806
Q [154] 0.455397 1.004807 * Q [21] 0.455397 1.004682
Q [148] 0.455397 1.004776 * Q [18] 0.455397 1.004767
Q [159] 0.471105 1.004446 * Q [160] 0.471105 1.004452
Q [87] 0.471105 1.004637 * Q [74] 0.471105 1.004560
Q [70] 0.471105 1.004631 * Q [92] 0.471105 1.004572
Q [110] 0.478766 1.004511 * Q [104] 0.478766 1.004569
Q [161] 0.478766 1.004389 * Q [158] 0.478766 1.004373
Q [56] 0.478766 1.004476 * Q [53] 0.478766 1.004551
Q [147] 0.482550 1.004503 * Q [9] 0.482550 1.004491
Q [137] 0.482550 1.004539 * Q [162] 0.493731 1.004270
Q [157] 0.493731 1.004244 * Q [36] 0.493731 1.004410
Q [121] 0.493731 1.004439 * Q [128] 0.493731 1.004389
Q [38] 0.493731 1.004334 * Q [20] 0.515364 1.004154
Q [19] 0.515364 1.004230 * Q [163] 0.515364 1.004112
Q [156] 0.515364 1.004079 * Q [146] 0.515364 1.004226
Q [138] 0.515364 1.004267 * Q [88] 0.522376 1.004204
Q [142] 0.522376 1.004037 * Q [91] 0.522376 1.004142
Q [109] 0.525847 1.004127 * Q [105] 0.525847 1.004183
Q [143] 0.525847 1.004018 * Q [71] 0.525847 1.004174
Q [141] 0.525847 1.004009 * Q [73] 0.525847 1.004107
Q [55] 0.536125 1.004027 * Q [54] 0.536125 1.004096
Q [122] 0.536125 1.004116 * Q [127] 0.536125 1.004066
Q [144] 0.536125 1.003957 * Q [140] 0.536125 1.003940
Q [155] 0.542869 1.003897 * Q [164] 0.542869 1.004042
Q [10] 0.542869 1.003958 * Q [139] 0.552831 1.004010
Q [37] 0.552831 1.003983 * Q [145] 0.552831 1.003967
Q [106] 0.575405 1.003872 * Q [89] 0.575405 1.003868
Q [125] 0.575405 1.003721 * Q [124] 0.575405 1.003718
Q [90] 0.575405 1.003809 * Q [108] 0.575405 1.003818
Q [123] 0.581694 1.003842 * Q [126] 0.581694 1.003792
Q [72] 0.581694 1.003829 * Q [107] 0.626851 1.003623
Non-periodic chartesian directions : none
Optical renormalization : 49.90624 [au]
Polarizability dimension : length
sunxl