Dear Daniele and Davide,
Thanks for all your comments and suggestions.
I am using a 16x16x1 k mesh for a orthorhombic unit cell, since the c axis is very long (~33Ang), I just used 1 kpoint. The k points from QE output are:
Code: Select all
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062
k( 2) = ( 0.0000000 0.0625000 0.0000000), wk = 0.0078125
k( 3) = ( 0.0000000 0.1250000 0.0000000), wk = 0.0078125
k( 4) = ( 0.0000000 0.1875000 0.0000000), wk = 0.0078125
k( 5) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0078125
k( 6) = ( 0.0000000 0.3125000 0.0000000), wk = 0.0078125
k( 7) = ( 0.0000000 0.3750000 0.0000000), wk = 0.0078125
k( 8) = ( 0.0000000 0.4375000 0.0000000), wk = 0.0078125
k( 9) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.0039062
k( 10) = ( 0.0625000 0.0000000 0.0000000), wk = 0.0078125
k( 11) = ( 0.0625000 0.0625000 0.0000000), wk = 0.0078125
k( 12) = ( 0.0625000 0.1250000 0.0000000), wk = 0.0078125
k( 13) = ( 0.0625000 0.1875000 0.0000000), wk = 0.0078125
k( 14) = ( 0.0625000 0.2500000 0.0000000), wk = 0.0078125
k( 15) = ( 0.0625000 0.3125000 0.0000000), wk = 0.0078125
k( 16) = ( 0.0625000 0.3750000 0.0000000), wk = 0.0078125
k( 17) = ( 0.0625000 0.4375000 0.0000000), wk = 0.0078125
k( 18) = ( 0.0625000 -0.5000000 0.0000000), wk = 0.0078125
k( 19) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0078125
k( 20) = ( 0.1250000 0.0625000 0.0000000), wk = 0.0078125
k( 21) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0078125
k( 22) = ( 0.1250000 0.1875000 0.0000000), wk = 0.0078125
k( 23) = ( 0.1250000 0.2500000 0.0000000), wk = 0.0078125
k( 24) = ( 0.1250000 0.3125000 0.0000000), wk = 0.0078125
k( 25) = ( 0.1250000 0.3750000 0.0000000), wk = 0.0078125
k( 26) = ( 0.1250000 0.4375000 0.0000000), wk = 0.0078125
k( 27) = ( 0.1250000 -0.5000000 0.0000000), wk = 0.0078125
k( 28) = ( 0.1875000 0.0000000 0.0000000), wk = 0.0078125
k( 29) = ( 0.1875000 0.0625000 0.0000000), wk = 0.0078125
k( 30) = ( 0.1875000 0.1250000 0.0000000), wk = 0.0078125
k( 31) = ( 0.1875000 0.1875000 0.0000000), wk = 0.0078125
k( 32) = ( 0.1875000 0.2500000 0.0000000), wk = 0.0078125
k( 33) = ( 0.1875000 0.3125000 0.0000000), wk = 0.0078125
k( 34) = ( 0.1875000 0.3750000 0.0000000), wk = 0.0078125
k( 35) = ( 0.1875000 0.4375000 0.0000000), wk = 0.0078125
k( 36) = ( 0.1875000 -0.5000000 0.0000000), wk = 0.0078125
k( 37) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0078125
k( 38) = ( 0.2500000 0.0625000 0.0000000), wk = 0.0078125
k( 39) = ( 0.2500000 0.1250000 0.0000000), wk = 0.0078125
k( 40) = ( 0.2500000 0.1875000 0.0000000), wk = 0.0078125
k( 41) = ( 0.2500000 0.2500000 0.0000000), wk = 0.0078125
k( 42) = ( 0.2500000 0.3125000 0.0000000), wk = 0.0078125
k( 43) = ( 0.2500000 0.3750000 0.0000000), wk = 0.0078125
k( 44) = ( 0.2500000 0.4375000 0.0000000), wk = 0.0078125
k( 45) = ( 0.2500000 -0.5000000 0.0000000), wk = 0.0078125
k( 46) = ( 0.3125000 0.0000000 0.0000000), wk = 0.0078125
k( 47) = ( 0.3125000 0.0625000 0.0000000), wk = 0.0078125
k( 48) = ( 0.3125000 0.1250000 0.0000000), wk = 0.0078125
k( 49) = ( 0.3125000 0.1875000 0.0000000), wk = 0.0078125
k( 50) = ( 0.3125000 0.2500000 0.0000000), wk = 0.0078125
k( 51) = ( 0.3125000 0.3125000 0.0000000), wk = 0.0078125
k( 52) = ( 0.3125000 0.3750000 0.0000000), wk = 0.0078125
k( 53) = ( 0.3125000 0.4375000 0.0000000), wk = 0.0078125
k( 54) = ( 0.3125000 -0.5000000 0.0000000), wk = 0.0078125
k( 55) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0078125
k( 56) = ( 0.3750000 0.0625000 0.0000000), wk = 0.0078125
k( 57) = ( 0.3750000 0.1250000 0.0000000), wk = 0.0078125
k( 58) = ( 0.3750000 0.1875000 0.0000000), wk = 0.0078125
k( 59) = ( 0.3750000 0.2500000 0.0000000), wk = 0.0078125
k( 60) = ( 0.3750000 0.3125000 0.0000000), wk = 0.0078125
k( 61) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0078125
k( 62) = ( 0.3750000 0.4375000 0.0000000), wk = 0.0078125
k( 63) = ( 0.3750000 -0.5000000 0.0000000), wk = 0.0078125
k( 64) = ( 0.4375000 0.0000000 0.0000000), wk = 0.0078125
k( 65) = ( 0.4375000 0.0625000 0.0000000), wk = 0.0078125
k( 66) = ( 0.4375000 0.1250000 0.0000000), wk = 0.0078125
k( 67) = ( 0.4375000 0.1875000 0.0000000), wk = 0.0078125
k( 68) = ( 0.4375000 0.2500000 0.0000000), wk = 0.0078125
k( 69) = ( 0.4375000 0.3125000 0.0000000), wk = 0.0078125
k( 70) = ( 0.4375000 0.3750000 0.0000000), wk = 0.0078125
k( 71) = ( 0.4375000 0.4375000 0.0000000), wk = 0.0078125
k( 72) = ( 0.4375000 -0.5000000 0.0000000), wk = 0.0078125
k( 73) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0039062
k( 74) = ( -0.5000000 0.0625000 0.0000000), wk = 0.0078125
k( 75) = ( -0.5000000 0.1250000 0.0000000), wk = 0.0078125
k( 76) = ( -0.5000000 0.1875000 0.0000000), wk = 0.0078125
k( 77) = ( -0.5000000 0.2500000 0.0000000), wk = 0.0078125
k( 78) = ( -0.5000000 0.3125000 0.0000000), wk = 0.0078125
k( 79) = ( -0.5000000 0.3750000 0.0000000), wk = 0.0078125
k( 80) = ( -0.5000000 0.4375000 0.0000000), wk = 0.0078125
k( 81) = ( -0.5000000 -0.5000000 0.0000000), wk = 0.0039062
k( 82) = ( -0.0625000 0.0625000 0.0000000), wk = 0.0078125
k( 83) = ( -0.0625000 0.1250000 0.0000000), wk = 0.0078125
k( 84) = ( -0.0625000 0.1875000 0.0000000), wk = 0.0078125
k( 85) = ( -0.0625000 0.2500000 0.0000000), wk = 0.0078125
k( 86) = ( -0.0625000 0.3125000 0.0000000), wk = 0.0078125
k( 87) = ( -0.0625000 0.3750000 0.0000000), wk = 0.0078125
k( 88) = ( -0.0625000 0.4375000 0.0000000), wk = 0.0078125
k( 89) = ( -0.1250000 0.0625000 0.0000000), wk = 0.0078125
k( 90) = ( -0.1250000 0.1250000 0.0000000), wk = 0.0078125
k( 91) = ( -0.1250000 0.1875000 0.0000000), wk = 0.0078125
k( 92) = ( -0.1250000 0.2500000 0.0000000), wk = 0.0078125
k( 93) = ( -0.1250000 0.3125000 0.0000000), wk = 0.0078125
k( 94) = ( -0.1250000 0.3750000 0.0000000), wk = 0.0078125
k( 95) = ( -0.1250000 0.4375000 0.0000000), wk = 0.0078125
k( 96) = ( -0.1875000 0.0625000 0.0000000), wk = 0.0078125
k( 97) = ( -0.1875000 0.1250000 0.0000000), wk = 0.0078125
k( 98) = ( -0.1875000 0.1875000 0.0000000), wk = 0.0078125
k( 99) = ( -0.1875000 0.2500000 0.0000000), wk = 0.0078125
k( 100) = ( -0.1875000 0.3125000 0.0000000), wk = 0.0078125
k( 101) = ( -0.1875000 0.3750000 0.0000000), wk = 0.0078125
k( 102) = ( -0.1875000 0.4375000 0.0000000), wk = 0.0078125
k( 103) = ( -0.2500000 0.0625000 0.0000000), wk = 0.0078125
k( 104) = ( -0.2500000 0.1250000 0.0000000), wk = 0.0078125
k( 105) = ( -0.2500000 0.1875000 0.0000000), wk = 0.0078125
k( 106) = ( -0.2500000 0.2500000 0.0000000), wk = 0.0078125
k( 107) = ( -0.2500000 0.3125000 0.0000000), wk = 0.0078125
k( 108) = ( -0.2500000 0.3750000 0.0000000), wk = 0.0078125
k( 109) = ( -0.2500000 0.4375000 0.0000000), wk = 0.0078125
k( 110) = ( -0.3125000 0.0625000 0.0000000), wk = 0.0078125
k( 111) = ( -0.3125000 0.1250000 0.0000000), wk = 0.0078125
k( 112) = ( -0.3125000 0.1875000 0.0000000), wk = 0.0078125
k( 113) = ( -0.3125000 0.2500000 0.0000000), wk = 0.0078125
k( 114) = ( -0.3125000 0.3125000 0.0000000), wk = 0.0078125
k( 115) = ( -0.3125000 0.3750000 0.0000000), wk = 0.0078125
k( 116) = ( -0.3125000 0.4375000 0.0000000), wk = 0.0078125
k( 117) = ( -0.3750000 0.0625000 0.0000000), wk = 0.0078125
k( 118) = ( -0.3750000 0.1250000 0.0000000), wk = 0.0078125
k( 119) = ( -0.3750000 0.1875000 0.0000000), wk = 0.0078125
k( 120) = ( -0.3750000 0.2500000 0.0000000), wk = 0.0078125
k( 121) = ( -0.3750000 0.3125000 0.0000000), wk = 0.0078125
k( 122) = ( -0.3750000 0.3750000 0.0000000), wk = 0.0078125
k( 123) = ( -0.3750000 0.4375000 0.0000000), wk = 0.0078125
k( 124) = ( -0.4375000 0.0625000 0.0000000), wk = 0.0078125
k( 125) = ( -0.4375000 0.1250000 0.0000000), wk = 0.0078125
k( 126) = ( -0.4375000 0.1875000 0.0000000), wk = 0.0078125
k( 127) = ( -0.4375000 0.2500000 0.0000000), wk = 0.0078125
k( 128) = ( -0.4375000 0.3125000 0.0000000), wk = 0.0078125
k( 129) = ( -0.4375000 0.3750000 0.0000000), wk = 0.0078125
k( 130) = ( -0.4375000 0.4375000 0.0000000), wk = 0.0078125
For exciton dispersion calculation, I am using k points 1 10 19 28 37 46 55 64 73 along GX direction.
I tried RIM, it didn't change the shape of the curves but shift them up. I also tried BSSmod="d" which gives exact results as BSSmod="s". The BSENGexx=5 Ry is tested converged value, I tried BSENGexx = 10 Ry, the results are the same.
I attach the full 8 lowest exciton dispersion here.
Lbar.PNG
Lfull.PNG
The lowest exciton is dark, which is just kind of parabolic. I compared the dispersion with that calculated from VASP (only Lfull, note that the x axis of all the figures are extended to half the BZ).
vasp_lfull.png
The dispersion from VASP clearly shows parabolic and smooth.
Why the BSE eigenvalue doesn't depend on BLongDir? For Lfull calculations, the exchange kernel has something like 4 pi e^2 |D \cdot q|^2 / Omega, where D is exciton transition dipole moment and q is unit vector of light polarization. So for different exciton dispersion direction, there should be different |D \cdot q|^2, am I right? I guess for Yambo, it is Dx^2+Dy^2+Dz^2 ?
Even for 2D, one would get parabolic dispersion without using the Coulomb cutoff technique, right? I think only with Coulomb truncation can one get linear dispersions for 2D systems.
Of all the 8 excitons, only one is bright. Btw, I'm doing SOC calculations. Not sure if there is any special treat for yambo to deal with SOC case.