How to calculate the linear response of 2D metallic systems?

Deals with issues related to computation of optical spectra in reciprocal space: RPA, TDDFT, local field effects.

Moderators: Davide Sangalli, andrea.ferretti, myrta gruning, andrea marini, Daniele Varsano, Conor Hogan

Post Reply
gaohan
Posts: 15
Joined: Sun Feb 07, 2021 3:56 am

How to calculate the linear response of 2D metallic systems?

Post by gaohan » Tue Mar 09, 2021 6:26 am

Dear developers,
I'm doing some calculations of linear response for 2D metallic system using QE interface. But I met some problems.
I firstly do 'scf' and 'nscf' calculations. After 'p2y' and initialize the yambo. I use the code

Code: Select all

yambo -F yambo.in_RPA -V RL -J q100 -o c -k tddft
to generate the input file. The input parameters are as follows:

Code: Select all

optics                         # [R OPT] Optics
tddft                          # [R   K] Use TDDFT kernel
chi                            # [R CHI] Dyson equation for Chi.
FFTGvecs= 15529        RL      # [FFT] Plane-waves
Chimod= "HARTREE"              # [X] IP/Hartree/ALDA/LRC/PF/BSfxc
NGsBlkXd=  301          RL      # [Xd] Response block size
% QpntsRXd
  2 | 21 |                     # [Xd] Transferred momenta
%
% BndsRnXd
   1 |  48 |                   # [Xd] Polarization function bands
%
% EnRngeXd
  0.00000 | 10.00000 | eV      # [Xd] Energy range
%
% DmRngeXd
  0.05000 |  0.05000 | eV      # [Xd] Damping range
%
ETStpsXd= 500                 # [Xd] Total Energy steps
% LongDrXd
 1.000000 | 0.000000 | 0.000000 |        # [Xd] [cc] Electric Field
%
But the eels spectrum I finally get didn't look right. There are just little difference between results with local field and without local field effect. It seems like that the LFE dosen't work.
The results without LFE is same as the results we get from another software, but the results with LFE is not same.
Looking forward to your helpful reply!
Han Gao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China

User avatar
Daniele Varsano
Posts: 3773
Joined: Tue Mar 17, 2009 2:23 pm
Contact:

Re: How to calculate the linear response of 2D metallic systems?

Post by Daniele Varsano » Tue Mar 09, 2021 9:12 am

Dear Han,

can you be more explicit? If you post your report file we can have a look if something went wrong.
Note that LFE strongly depends on the polarisation direction (LongDrXd), if this is a 2D system I would expect a big effect in the direction orthogonal to the plane where the system lies, and smaller effect in the other directions. Next pay also attention to convergence with respect the dimension of the dielectric matrix (NGsBlkXd). Finally note that you are looking at finite momentum response, probably it is what you need, but just in case the I noticed you are not including the Q=0 limit.

Best,
Daniele
Dr. Daniele Varsano
S3-CNR Institute of Nanoscience and MaX Center, Italy
MaX - Materials design at the Exascale
http://www.nano.cnr.it
http://www.max-centre.eu/

gaohan
Posts: 15
Joined: Sun Feb 07, 2021 3:56 am

Re: How to calculate the linear response of 2D metallic systems?

Post by gaohan » Wed Mar 10, 2021 6:17 am

Dear Daniele,
Thank you for your reply.
I left out the calculation of Q=0 because I want to get the results of eels spectrum with finite momentum(plasmon dispersion).
These are my input files.
1. the input file of scf calculations:

Code: Select all

&CONTROL
    calculation='scf', disk_io='low', prefix='alb2',
    pseudo_dir='../pse', outdir='./tmp', verbosity='high'
    tprnfor=.true., tstress=.true.,
    wf_collect=.true.,nstep = 200,
    etot_conv_thr = 1.0d-6,forc_conv_thr = 1.0d-5
/
&SYSTEM
    ibrav= 4,
    nat= 3, ntyp= 2,
    celldm(1) =5.6211,
    celldm(3) = 6.723,
    occupations = 'smearing', smearing = 'mp', degauss = 0.05,
    ecutwfc= 80, ecutrho = 320,
  !  assume_isolated='2D',
    force_symmorphic=.true.,
/
&ELECTRONS
    conv_thr = 1.0d-9,
    mixing_beta = 0.7d0,
    diagonalization = 'david'
/
&IONS
    ion_dynamics='damp'
    /
&CELL
   press = 0.00 ,
   press_conv_thr=0.1
   cell_dynamics = 'bfgs' ,
   cell_dofree = '2Dxy',
/
ATOMIC_SPECIES
 Al  26.981539 Al_ONCV_PBE-1.2.upf
 B   10.811    B_ONCV_PBE-1.2.upf
ATOMIC_POSITIONS (crystal)
Al            0.0000000000       -0.0000000000        0.0306032265
B             0.3333333433        0.6666666866        0.1020700413
B             0.6666666865        0.3333333433        0.1020700413
K_POINTS {automatic}
12 12 1 1 1 1
2. The input file of nscf calculation

Code: Select all

&CONTROL
    calculation='nscf', disk_io='low', prefix='alb2',
    pseudo_dir='../../pse', outdir='./tmp', verbosity='high'
    tprnfor=.true., tstress=.true.,
    wf_collect=.true.,nstep = 200,
    etot_conv_thr = 1.0d-6,forc_conv_thr = 1.0d-5
/
&SYSTEM
    ibrav= 4,
    nat= 3, ntyp= 2,
    celldm(1) =5.6211,
    celldm(3) = 6.723,
    occupations = 'smearing', smearing = 'mp', degauss = 0.05,
    ecutwfc= 80, ecutrho = 320,
  !  assume_isolated='2D',
    force_symmorphic=.true.,nbnd = 48,
/
&ELECTRONS
    conv_thr = 1.0d-9,
    mixing_beta = 0.7d0,
    diagonalization = 'david'
    diago_thr_init=5.0e-6,
    diago_full_acc=.true.
/
&IONS
    ion_dynamics='damp'
    /
&CELL
   press = 0.00 ,
   press_conv_thr=0.1
   cell_dynamics = 'bfgs' ,
   cell_dofree = '2Dxy',
/
ATOMIC_SPECIES
 Al  26.981539 Al_ONCV_PBE-1.2.upf
 B   10.811    B_ONCV_PBE-1.2.upf
ATOMIC_POSITIONS (crystal)
Al            0.0000000000       -0.0000000000        0.0306032265
B             0.3333333433        0.6666666866        0.1020700413
B             0.6666666865        0.3333333433        0.1020700413
K_POINTS {automatic}
76 76 1 0 0 0
3. The input file of linear response calculations using yambo

Code: Select all

optics                         # [R OPT] Optics
tddft                          # [R   K] Use TDDFT kernel
chi                            # [R CHI] Dyson equation for Chi.
FFTGvecs= 15529        RL      # [FFT] Plane-waves
Chimod= "HARTREE"              # [X] IP/Hartree/ALDA/LRC/PF/BSfxc
NGsBlkXd=  301          RL      # [Xd] Response block size
% QpntsRXd
  2 | 21 |                     # [Xd] Transferred momenta
%
% BndsRnXd
   1 |  48 |                   # [Xd] Polarization function bands
%
% EnRngeXd
  0.00000 | 10.00000 | eV      # [Xd] Energy range
%
% DmRngeXd
  0.05000 |  0.05000 | eV      # [Xd] Damping range
%
ETStpsXd= 100                  # [Xd] Total Energy steps
% LongDrXd
 0.000000 | 0.000000 | 1.000000 |        # [Xd] [cc] Electric Field
These are the report files we get.
1. r-q100_optics_chi_tddft (including just key information, because it's so long)

Code: Select all

 [RD./SAVE//ns.db1]------------------------------------------
  Bands                           :  48
  K-points                        :  520
  G-vectors             [RL space]:  99701
  Components       [wavefunctions]: 12548
  Symmetries       [spatial+T-rev]: 24
  Spinor components               : 1
  Spin polarizations              : 1
  Temperature                 [ev]:  0.02585
  Electrons                       : 17.00000
  WF G-vectors                    : 15521
  Max atoms/species               : 2
  No. of atom species             : 2
  Exact exchange fraction in XC   : 0.000000
  Exact exchange screening in XC  : 0.000000
  Magnetic symmetries             : no
 - S/N 007196 -------------------------- v.04.05.02 r.09122 -

 [02] CORE Variables Setup
 =========================
  [02.01] Unit cells
  ==================

  Unit cell is HCP

  ... containing 1Al2B atoms

  ... with scaling factors [a.u.]:  5.62110   4.86802  37.79066

  Direct Lattice(DL) unit cell [iru  /  cc(a.u.)]
  A1 = 1.000000  0.000000  0.000000      5.621100  0.000000  0.000000
  A2 =-0.500000  1.000000  0.000000     -2.810550  4.868015  0.000000
  A3 = 0.000000  0.000000  1.000000      0.000000  0.000000  37.79066

  DL volume [au]: 1034.

  Reciprocal Lattice(RL) unit cell [iku  /  cc]
  B1 = 1.000000  0.500000  0.000000      1.117786  0.645354  0.000000
  B2 = 0.000000  1.000000  0.000000      0.000000  1.290708  0.000000
  B3 = 0.000000  0.000000  1.000000      0.000000  0.000000  0.166263
[02.02] Symmetries
  ==================

  DL (S)ymmetries [cc]
  [S1] 1.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  1.000000
  [S2]-1.000000  0.000000  0.000000  0.000000 -1.000000  0.000000  0.000000  0.000000  1.000000
  [S3] 0.500000  0.866025  0.000000 -0.866025  0.500000  0.000000  0.000000  0.000000  1.000000
  [S4] 0.500000 -0.866025  0.000000  0.866025  0.500000  0.000000  0.000000  0.000000  1.000000
  [S5]-0.500000  0.866025  0.000000 -0.866025 -0.500000  0.000000  0.000000  0.000000  1.000000
  [S6]-0.500000 -0.866025  0.000000  0.866025 -0.500000  0.000000  0.000000  0.000000  1.000000
  [S7] 1.000000  0.000000  0.000000  0.000000 -1.000000  0.000000  0.000000  0.000000  1.000000
  [S8]-1.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  1.000000
  [S9]-0.500000  0.866025  0.000000  0.866025  0.500000  0.000000  0.000000  0.000000  1.000000
  [S10]-0.500000 -0.866025  0.000000 -0.866025  0.500000  0.000000  0.000000  0.000000  1.000000
  [S11] 0.500000  0.866025  0.000000  0.866025 -0.500000  0.000000  0.000000  0.000000  1.000000
  [S12] 0.500000 -0.866025  0.000000 -0.866025 -0.500000  0.000000  0.000000  0.000000  1.000000

  [SYMs] Time-reversal derived K-space symmetries: 13  24
  [SYMs] Spatial inversion 13 is NOT a symmetry
  [SYMs] Group table built correctly
  [02.03] RL shells
  =================

  Shells, format: [S#] G_RL(mHa)

   [S4825]:99701(0.1600E+6) [S4824]:99689(0.1600E+6) [S4823]:99677(0.1600E+6) [S4822]:99665(0.1599E+6)
   [S4821]:99653(0.1599E+6) [S4820]:99647(0.1599E+6) [S4819]:99623(0.1599E+6) [S4818]:99599(0.1599E+6)
   [S4817]:99551(0.1599E+6) [S4816]:99539(0.1599E+6) [S4815]:99515(0.1598E+6) [S4814]:99479(0.1598E+6)
   [S4813]:99455(0.1597E+6) [S4812]:99431(0.1597E+6) [S4811]:99395(0.1596E+6) [S4810]:99383(0.1596E+6)
   [S4809]:99359(0.1595E+6) [S4808]:99347(0.1595E+6) [S4807]:99323(0.1595E+6) [S4806]:99299(0.1595E+6)
   [S4805]:99287(0.1595E+6) [S4804]:99263(0.1594E+6) [S4803]:99239(0.1594E+6) [S4802]:99215(0.1594E+6)
   [S4801]:99191(0.1594E+6) [S4800]:99167(0.1594E+6) [S4799]:99143(0.1592E+6) [S4798]:99119(0.1592E+6)
   ...
   [S12]:47( 888.2499) [S11]:35( 884.5875) [S10]:33( 846.7848) [S9]:21( 832.9632)
   [S8]:15( 677.2624) [S7]:13( 497.5805) [S6]:11( 345.5421) [S5]:9( 221.1469)
   [S4]:7( 124.3951) [S3]:5( 55.28672) [S2]:3( 13.82168) [S1]:1( 0.000000)
   [02.04] K-grid lattice
  ======================

  Compatible Grid is 2D
  B1 [rlu]=-.132E-01 -.931E-09  0.00
  B2      =  0.00000   0.01316   0.00000
  Grid dimensions               :  76   76
  K lattice UC volume       [au]:0.4153E-4

  [02.05] Energies [ev] & Occupations
  ===================================

  [X]Fermi Level        [ev]: -2.127107
  [X]VBM / CBm          [ev]: -2.127107 -2.127107
  [X]Electronic Temp. [ev K]: 0.2586E-1  300.1
  [X]Bosonic    Temp. [ev K]: 0.2586E-1  300.1
  [X]Finite Temperature mode: yes
  [X]El. density      [cm-3]: 0.111E+24
  [X]States summary         : Full        Metallic    Empty
                                 0001-0007   0008-0009   0010-0048
  [X]N of el / N of met el  :  17.00000   3.00345
  [X]Average metallic occ.  :             0.750862

  [WARNING][X] Metallic system
  X BZ K-points :  5776
  ......
The eels from o-q100.eel_q2_inv_rpa_dyson is plotted as follow:

Code: Select all

#                                                                     
# ooooo   oooo ..     ooo        ooo ooooooooo.    .oooo.             
#  `88.   .8" .88.    `88.       .88 `88"   `Y8b  dP"  `Yb            
#   `88. .8" .8"88.    888b     d"88  88     888 88      88           
#    `88.8" .8" `88.   8 Y88. .P  88  88oooo888" 88      88           
#     `88" .88ooo888.  8  `888"   88  88    `88b 88      88           
#      88 .8"     `88. 8    Y     88  88    .88P `8b    d8"           
#     o88o88o      888o8          88 o88bood8P"   `Ybod8P"            
#                                                                     
#                                                                     
# GPL Version 4.5.2 Revision 9122. (Based on r.17116 h.2e426da)       
#                                                                     
#                       MPI+SLK Build                                 
#                 http://www.yambo-code.org                           
#
# EELS @ Q(2)  [iku]:  0.000000   0.013158   0.000000
#
#
# - Energies      are Perdew, Burke & Ernzerhof(X)+Perdew, Burke & Ernzerhof(C)
# - Wavefunctions are Perdew, Burke & Ernzerhof(X)+Perdew, Burke & Ernzerhof(C)
#
# - The Green`s function is Retarded -
#
#    E/ev[1]       EEL-Im[2]     EEL-Re[3]     EELo-Im[4]    EELo-Re[5]
#
    0.000        0.1166E-06    -.1743E-01    -.1002E-12    -.1073E-02
   0.10101       0.97957E-3    -.17003E-1    0.85715E-3    -.62836E-3
   0.20202       0.17359E-2    -.16030E-1    0.15314E-2    0.67699E-3
      0.30303       0.00183      -0.01323       0.00183       0.00357
      0.40404       0.00235      -0.00914       0.00241       0.00776
      0.50505       0.00298      -0.00381       0.00308       0.01326
      0.60606       0.00371       0.00291       0.00384       0.02020
      0.70707       0.00456       0.01120       0.00473       0.02879
      0.80808       0.00563       0.02134       0.00586       0.03933
      0.90909       0.00710       0.03338       0.00741       0.05186
      1.01010       0.00918       0.04852       0.00964       0.06770
     1.111111      0.013024      0.066013      0.013816      0.086062
     1.212121      0.016974      0.086384      0.018113      0.107544
     1.313131      0.027162      0.112432      0.029465      0.135103
     1.414141      0.037277      0.142247      0.041076      0.166915
     1.515151      0.064079      0.186521      0.072735      0.214168
    1.6161616     0.1390917     0.2117632     0.1588392     0.2321827
    1.7171715     0.1895953     0.1697712     0.2012485     0.1775952
    1.8181819     0.1528077     0.1480017     0.1563716     0.1640547
    1.9191918     0.1523984     0.1718093     0.1565094     0.1905766
    2.0202019     0.1603747     0.2248871     0.1678598     0.2473763
    2.1212122     0.2000217     0.2566725     0.2117332     0.2795303
    2.2222221     0.2404223     0.2737484     0.2534083     0.2953320
    2.3232322     0.2750942     0.2857454     0.2894022     0.3073944
    2.4242425     0.3067603     0.3000355     0.3243358     0.3215300
    2.5252526     0.3211211     0.3345152     0.3410765     0.3577246
    2.6262624     0.3773834     0.3483849     0.4003489     0.3683708
    2.7272725     0.3866486     0.3972074     0.4112984     0.4229861
    2.8282828     0.4753118     0.4182379     0.5056881     0.4374065
    2.9292929     0.5224489     0.5195655     0.5652580     0.5454633
    3.0303028     0.6409754     0.5304346     0.6915945     0.5474585
    3.1313131     0.7392769     0.6432033     0.8106978     0.6632879
    3.2323232     0.9238875     0.6350028     1.0077957     0.6353155
    3.3333333     1.1920905     0.7219167     1.3160532     0.6868764
    3.4343431     1.4251378     0.6291888     1.5577492     0.5479475
    3.5353534     1.8864634     0.3649882     1.9773800     0.1709341
     3.636364      2.155691     -0.053559      2.132880     -0.324186
    3.7373736     2.0748074    -0.6177523     1.9276417    -0.8184505
    3.8383837     1.5276440    -1.0000931     1.3647820    -1.0318301
    3.9393940     1.2948613    -0.9540281     1.1834310    -0.9564146
    4.0404038     1.2599816    -0.9790259     1.1574683    -1.0063946
    4.1414142     1.2416899    -0.9827000     1.1361893    -1.0260407
    4.2424245     1.1722341    -1.2884187     0.9795060    -1.2847443
    4.3434343     0.9169621    -1.3972890     0.7425922    -1.2982373
    4.4444442     0.6289412    -1.4166765     0.5509960    -1.2650059
    4.5454545     0.4145059    -1.3084736     0.3886772    -1.1996725
    4.6464643     0.2686206    -1.1808345     0.2521646    -1.0926321
    4.7474747     0.2154445    -1.0513527     0.2072010    -0.9798196
    4.8484850     0.1740612    -0.9654448     0.1644007    -0.9071004
    4.9494948     0.1547758    -0.8859562     0.1391865    -0.8302084
    5.0505052     0.1298486    -0.8327144     0.1171861    -0.7719346
    5.1515150     0.1167905    -0.7673757     0.1096601    -0.7101117
     5.252525      0.104223     -0.721661      0.099809     -0.666697
     5.353535      0.098922     -0.668451      0.095941     -0.617810
     5.454545      0.094215     -0.632147      0.090827     -0.582209
     5.555555      0.086723     -0.588286      0.084088     -0.539537
     5.656566      0.082007     -0.548915      0.079706     -0.499703
     5.757576      0.074921     -0.498772      0.073750     -0.449652
     5.858586      0.085656     -0.445060      0.086320     -0.395236
    5.9595957     0.1169012    -0.4014943     0.1204215    -0.3530178
    6.0606055     0.1468117    -0.3758855     0.1519603    -0.3293133
    6.1616158     0.1575247    -0.3549519     0.1629988    -0.3085697
    6.2626262     0.1731414    -0.3349184     0.1788680    -0.2903176
    6.3636360     0.1836210    -0.3191016     0.1896401    -0.2760582
    6.4646463     0.1945566    -0.2946411     0.1994594    -0.2529090
    6.5656567     0.2042235    -0.2705791     0.2090707    -0.2293627
    6.6666665     0.2096560    -0.2427151     0.2115915    -0.2028076
    6.7676764     0.2197968    -0.2169148     0.2182215    -0.1761567
    6.8686862     0.2235360    -0.1721599     0.2178232    -0.1258674
     6.969697      0.263101     -0.109528      0.259452     -0.057085
     7.070707      0.334390     -0.082785      0.333674     -0.025864
     7.171717      0.392624     -0.085186      0.396890     -0.026223
     7.272727      0.440778     -0.093035      0.450853     -0.036101
     7.373737      0.461774     -0.115422      0.472652     -0.061895
     7.474747      0.425089     -0.134384      0.429043     -0.079578
    7.5758       0.43684       -.65004E-1    0.44170       -.43184E-2
     7.676767      0.471630     -0.035887      0.479007      0.027963
     7.777778      0.530967     -0.019571      0.533717      0.044778
     7.878788      0.589302      0.014598      0.596751      0.093964
     7.979797      0.606788     -0.048616      0.626039      0.033339
    8.0808       0.63833       0.63420E-2    0.66990       0.91520E-1
     8.181818      0.680786     -0.022050      0.717268      0.051510
     8.282828      0.635090      0.074638      0.678413      0.149203
    8.3838387     0.7852277     0.1198168     0.8147740     0.1742226
     8.484849      0.842883      0.025224      0.864156      0.105734
    8.5858583     0.8030041     0.1061459     0.8458360     0.1976332
    8.6868687     0.9361967     0.2215764     0.9918955     0.3003976
    8.7878780     1.0976692     0.1618387     1.1343385     0.2349693
    8.8888884     1.1849537     0.2136036     1.2324952     0.3083387
     8.989899      1.452248      0.083948      1.501256      0.178464
     9.090909      1.425423     -0.080649      1.485224      0.030995
     9.191918      1.530466     -0.060197      1.613973      0.060280
    9.2929287     1.5777446    -0.3492743     1.6822916    -0.2358784
    9.3939390     1.6155778    -0.3199707     1.7498424    -0.2211924
    9.4949493     1.6550920    -0.5032868     1.8020029    -0.4306627
    9.5959597     1.5868967    -0.5417680     1.7326908    -0.4709132
    9.6969700     1.6484889    -0.6496953     1.7924409    -0.5951138
    9.7979794     1.5606129    -0.7916428     1.7078587    -0.7301661
    9.8989897     1.5449795    -0.8659262     1.7070940    -0.8168129
    10.000000      1.442326     -0.909093      1.625556     -0.864483
# 
# 03/10/2021 at 10:26 YAMBO @ sdu-PowerEdge-R740 [start]
# 03/10/2021 at 11:47                            [end]
#  
# Timing   [Min/Max/Average]: 01h-21m-02s/01h-21m-02s/01h-21m-02s
#
# .-Input file : yambo.in
# | optics                         # [R OPT] Optics
# | chi                            # [R CHI] Dyson equation for Chi.
# | tddft                          # [R   K] Use TDDFT kernel
# | ElecTemp=  0.02587     eV      # Electronic Temperature
# | FFTGvecs= 15529        RL      # [FFT] Plane-waves
# | X_finite_q_CPU= "2.2.2.2.2"    # [PARALLEL] CPUs for each role
# | X_finite_q_ROLEs= "g.v.c.k.q"  # [PARALLEL] CPUs roles (q,g,k,c,v)
# | Chimod= "HARTREE"              # [X] IP/Hartree/ALDA/LRC/PF/BSfxc
# | NGsBlkXd= 301          RL      # [Xd] Response block size
# | % QpntsRXd
# |  2 | 3 |                       # [Xd] Transferred momenta
# | %
# | % BndsRnXd
# |    1 |  48 |                   # [Xd] Polarization function bands
# | %
# | GrFnTpXd= "R"                  # [Xd] Green`s function (T)ordered,(R)etarded,(r)senant,(a)ntiresonant [T, R, r, Ta, Ra]
# | % EnRngeXd
# |   0.00000 | 10.00000 | eV      # [Xd] Energy range
# | %
# | % DmRngeXd
# |   0.05000 |  0.05000 | eV      # [Xd] Damping range
# | %
# | ETStpsXd= 100                  # [Xd] Total Energy steps
# | % LongDrXd
# | 0.1000E-4 | 0.000    | 0.000    |        # [Xd] [cc] Electric Field
# | %
The results including LFE doesn't agree with the results we get from other softwares and papers, but the results without LFE are correct.
Looking forward to your reply.
Han Gao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China

User avatar
Daniele Varsano
Posts: 3773
Joined: Tue Mar 17, 2009 2:23 pm
Contact:

Re: How to calculate the linear response of 2D metallic systems?

Post by Daniele Varsano » Wed Mar 10, 2021 8:59 am

Dear Han Gao,
you can post the entire report by using the attachment button renaming your files with an allowed suffix e.g. .txt
Anyway, being a 2D system you should isolate it by using a cutoff coulomb potential (this is achieved by using the -r option when building the input file). You need to add in your input:

Code: Select all

rim_cut
RandQpts=1000000                      # [RIM] Number of random q-points in the BZ
RandGvec= 1                RL    # [RIM] Coulomb interaction RS components
CUTGeo= "box z"                 # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere/ws X/Y/Z/XY..
% CUTBox
   0.00000 | 0.00000 |  37.00000 |        # [CUT] [au] Box sides
%
Besides that, you should check if the G blocks included in your dielectric matrix are at convergence.

Next, it would be useful to know what you mean exactly by "does not agree", energy peaks, shape...etc..

Best,
Daniele
Dr. Daniele Varsano
S3-CNR Institute of Nanoscience and MaX Center, Italy
MaX - Materials design at the Exascale
http://www.nano.cnr.it
http://www.max-centre.eu/

Post Reply